Publications in scientific journals

The list of published articles and dissertations reflects the success of SFB 1313.

true" ? copyright : '' }

List of Publications within SFB 1313

  1. 2025

    1. Asbaghi, E. V., Buntic, I., Nazari, F., Flemisch, B., Helmig, R., & Joekar-Niasar, V. (2025). Applicability of the Vertical Equilibrium model to underground hydrogen injection and withdrawal. International Journal of Hydrogen Energy, 106, 790–805. https://doi.org/10.1016/j.ijhydene.2025.01.201
    2. Bringedal, C. (2025). Eigenvalue problem solver for evaporation-driven density instabilities in partially saturated porous media. DaRUS. https://doi.org/10.18419/DARUS-4711
    3. Bringedal, C. (2025). Netgen/NGSolve code for pore-resolved simulations for: Local Thermal Non-Equilibrium Models in Porous Media: A Comparative Study of Conduction effects. DaRUS. https://doi.org/10.18419/DARUS-4771
    4. Bringedal, C., Kiemle, S., van Duijn, C. J., & Helmig, R. (2025). Impact of saturation on evaporation-driven density instabilities in porous media: mathematical and numerical analysis. In arXiv preprint arXiv:2501.12784. https://doi.org/10.48550/arXiv.2501.12784
    5. Gadirov, H., Roerdink, J. B. T. M., & Frey, S. (2025). FLINT: Learning-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization. In arXiv preprint arXiv:2409.19178. https://doi.org/10.48550/arXiv.2409.19178
    6. Ghosh, T., Bringedal, C., Rohde, C., & Helmig, R. (2025). A phase-field approach to model evaporation in porous media: Modeling and upscaling. Advances in Water Resources, 199. https://doi.org/10.1016/j.advwatres.2025.104922
    7. Khurshid, H., Polukhov, E., & Keip, M.-A. (2025). Mixed variational formulation and finite-element implementation of second-order poro-elasticity: Datasets. DaRUS. https://doi.org/10.18419/DARUS-4485
    8. Kohlhaas, R., Hommel, J., Weinhardt, F., Class, H., Oladyshkin, S., & Flemisch, B. (2025). Numerical Investigation of Preferential Flow Paths in Enzymatically Induced Calcite Precipitation supported by Bayesian Model Analysis. In arXiv preprint arXiv:2503.17314. https://doi.org/10.48550/arXiv.2503.17314
    9. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2025). A novel geometry-informed drag term formulation for pseudo-3D Stokes simulations with varying apertures. Advances in Water Resources, 195. https://doi.org/10.1016/j.advwatres.2024.104860
    10. Kröker, I., Brünnette, T., Wildt, N., Morales Oreamuno, M. F., Kohlhaas, R., Oladyshkin, S., & Nowak, W. (2025). Bayesian3 active learning for regularized multi-resolution arbitrary polynomial chaos using information theory. International Journal for Uncertainty Quantification, 15(3), Article 3. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024052675
    11. Schlaich, A., Barrat, J.-L., & Coasne, B. (2025). Theory and Modeling of Transport for Simple Fluids in Nanoporous Materials: From Microscopic to Coarse-Grained Descriptions. Chem. Rev., 125. https://doi.org/10.1021/acs.chemrev.4c00406
  2. 2024

    1. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    2. Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences, 28. https://doi.org/10.1007/s10596-023-10267-6
    3. Bringedal, C., & Jaust, A. (2024). Phase-field modeling and effective simulation of non-isothermal reactive transport. Results in Applied Mathematics, 21. https://doi.org/10.1016/j.rinam.2024.100436
    4. Brodbeck, M., Egli, F. S., Suditsch, M., Seyedpour, S. M., & Ricken, T. (2024). On the influence of non-linearity within two-phase poro-elasticity: Numerical examples and counterexamples. Examples and Counterexamples, 6. https://doi.org/10.1016/j.exco.2024.100167
    5. Brünnette, T., & Nowak, W. (2024). Efficient Inference for non-deterministic fractures. In J. Gómez-Hernández, E. Varouchakis, D. Hristopulos, G. Karatzas, P. Renard, & M. J. ao Pereira (Eds.), geoENV2024 Book of Abstracts (pp. 67–68). https://2024.geoenvia.org/wp-content/uploads/sites/8/2024/07/BookOfAbstracts_OnlyAbstracts_v3_corr.pdf
    6. Buntic, I., Schneider, M., Flemisch, B., & Helmig, R. (2024). A fully-implicit solving approach to an adaptive multi-scale model-coupling a vertical-equilibrium and full-dimensional model for compressible, multi-phase flow in porous media. In arXiv preprint arXiv:2405.18285. https://doi.org/10.48550/arXiv.2405.18285
    7. Bursik, B., Eller, J., & Gross, J. (2024). Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State. The Journal of Physical Chemistry B, 128(15), Article 15. https://doi.org/10.1021/acs.jpcb.3c07447
    8. Bursik, B., Stierle, R., Schlaich, A., Rehner, P., & Gross, J. (2024). Viscosities of inhomogeneous systems from generalized entropy scaling. Physics of Fluids, 36(4), Article 4. https://doi.org/10.1063/5.0189902
    9. Chen, J., Chourdakis, G., Desai, I., Homs-Pons, C., Rodenberg, B., Schneider, D., Simonis, F., Uekermann, B., Davis, K., Jaust, A., Kelm, M., Kotarsky, N., Kschidock, H., Mishra, D., Mühlhäußer, M., Schrader, T. P., Schulte, M., Seitz, V., Signorelli, J., … Zonta, E. (2024). preCICE Distribution Version v2404.0. DaRUS. https://doi.org/10.18419/DARUS-4167
    10. Coltman, E., Schneider, M., & Helmig, R. (2024). Data-Driven Closure Parametrizations with Metrics: Dispersive Transport. In arXiv preprint arXiv:2311.13975. https://doi.org/10.48550/arXiv.2311.13975
    11. Flemisch, B., Nordbotten, J. M., Fernø, M., Juanes, R., Both, J. W., Class, H., Delshad, M., Doster, F., Ennis-King, J., Franc, J., Geiger, S., Gläser, D., Green, C., Gunning, J., Hajibeygi, H., Jackson, S. J., Jammoul, M., Karra, S., Li, J., … Zhang, Z. (2024). The FluidFlower Validation Benchmark Study for the Storage of CO2. Transport in Porous Media, 151, 865–912. https://doi.org/10.1007/s11242-023-01977-7
    12. Gao, H., Abdullah, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., Zhou, D., Liu, Q., & Sauter, M. (2024). Pore-scale study of the effects of grain size on the capillary-associated interfacial area during primary drainage. Journal of Hydrology, 632, 130865. https://doi.org/10.1016/j.jhydrol.2024.130865
    13. Helmig, R., & Huber, R. (2024). Comparison of different discretization techniques for multiphase flow in heterogeneous media. WIT Transactions on Ecology and the Environment, 24. https://doi.org/10.2495/CMWR980052
    14. Huber, F., Bürkner, P. C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian optimization. Computational Mechanics, 74, 151–168. https://doi.org/10.1007/s00466-023-02427-3
    15. Huber, R., & Helmig, R. (2024). Simulation of Multiphase and Compositional Flow in Porous Media. WIT Transactions on Ecology and the Environment, 24. https://doi.org/10.2495/CMWR980102
    16. Hörl, M., & Rohde, C. (2024). Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture. Networks and Heterogeneous Media, 19, 114–156. https://doi.org/10.3934/nhm.2024006
    17. Jannesarahmadi, S., Aminzadeh, M., Helmig, R., Or, D., & Shokri, N. (2024). Quantifying Salt Crystallization Impact on Evaporation Dynamics From Porous Surfaces. Geophysical Research Letters, 51(22), Article 22. https://doi.org/10.1029/2024gl111080
    18. Keim, L., Buntic, I., Coltman, E., Flemisch, B., Ghosh, T., Giraud, M., Gläser, D., Grüninger, C., Hommel, J., Kelm, M., Koch, T., Kostelecky, A. M., Meggendorfer, S., Oukili, H., Schneider, M., Schollenberger, T., Veyskarami, M., Wang, Y., Wendel, K., … Wu, H. (2024). DuMux 3.9.0. DaRUS. https://doi.org/10.18419/DARUS-4351
    19. Kelm, M., Bringedal, C., & Flemisch, B. (2024). Upscaling and Effective Behavior for Two-Phase Porous-Medium Flow using a Diffuse Interface Model. Transport in Porous Media, 151, 1849–1886. https://doi.org/10.1007/s11242-024-02097-6
    20. Khurshid, H., Polukhov, E., & Keip, M.-A. (2024). Mixed variational formulation and finite-element implementation of second-order poro-elasticity. International Journal of Solids and Structures, 305. https://doi.org/10.1016/j.ijsolstr.2024.113055
    21. Kohlhaas, R., & Oreamuno, M. F. M. (2024). BayesValidRox 1.1.0. DaRUS. https://doi.org/10.18419/DARUS-4613
    22. Krach, D., Ruf, M., & Steeb, H. (2024). POREMAPS 1.0.0: Code, Benchmarks, Applications. DaRUS. https://doi.org/10.18419/DARUS-3676
    23. Lee, D., Ruf, M., Karadimitriou, N., Steeb, H., Manousidaki, M., Varouchakis, E. A., Tzortzakis, S., & Yiotis, A. (2024). Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-60075-w
    24. Lohrmann, C., Holm, C., & Datta, S. S. (2024). Influence of bacterial swimming and hydrodynamics on attachment of phages. Soft Matter, 20, 4795–4805. https://doi.org/10.1039/D4SM00060A
    25. Mel’nyk, T., & Rohde, C. (2024). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions. Asymptotic Analysis, 137, 27–52. https://doi.org/10.3233/asy-231876
    26. Mel’nyk, T., & Rohde, C. (2024). Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains. Nonlinear Differential Equations and Applications NoDEA, 31(6), Article 6. https://doi.org/10.1007/s00030-024-00997-6
    27. Mel’nyk, T., & Rohde, C. (2024). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. Analysis and Applications, 22, 833–879. https://doi.org/10.1142/s0219530524500040
    28. Mel’nyk, T., & Rohde, C. (2024). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. Journal of Mathematical Analysis and Applications, 529. https://doi.org/10.1016/j.jmaa.2023.127587
    29. Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 103, 1–26. https://doi.org/10.1080/00036811.2024.2322644
    30. Neunhauserei, L., Fuchs, A., Helmig, R., & Helmig, A. (2024). Flow and transport processes in fractured porous media. WIT Transactions on Ecology and the Environment, 24. https://doi.org/10.2495/CMWR980132
    31. Nordbotten, J. M., Ferno, M. A., Flemisch, B., Kovscek, A. R., & Lie, K.-A. (2024). The 11th Society of Petroleum Engineers Comparative Solution Project: Problem Definition. SPE Journal, 29, 2507–2524. https://doi.org/10.2118/218015-PA
    32. Nordbotten, J. M., Fernø, M., Flemisch, B., Juanes, R., & Jørgensen, M. (2024). Experimentally assessing the uncertainty of forecasts of geological carbon storage. International Journal of Greenhouse Gas Control, 135, 104162. https://doi.org/10.1016/j.ijggc.2024.104162
    33. Nowak, W., Brünnette, T., Schalkers, M., & Möller, M. (2024). Overdispersion in gate tomography: Experiments and continuous, two-scale random walk model on the Bloch sphere. ACM Transactions on Quantum Computing, 5, 1–17. https://doi.org/10.1145/3688857
    34. Pelzer, J., & Schulte, M. (2024). Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks. Geoenergy Science and Engineering, 237, 212788. https://doi.org/10.1016/j.geoen.2024.212788
    35. Schlaich, A., Vandamme, M., Plazanet, M., & Coasne, B. (2024). Bridging Microscopic Dynamics and Hydraulic Permeability in Mechanically-Deformed Nanoporous Materials. ACS Nano, 18(38), Article 38. https://doi.org/10.1021/acsnano.4c04190
    36. Schneider, J., Kiemle, S., Heck, K., Rothfuss, Y., Braud, I., Helmig, R., & Vanderborght, J. (2024). Analysis of experimental and simulation data of evaporation-driven isotopic fractionation in unsaturated porous media. Vadose Zone Journal, 23(5), Article 5. https://doi.org/10.1002/vzj2.20363
    37. Schneider, M., & Koch, T. (2024). Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 420. https://doi.org/10.1016/j.cma.2023.116723
    38. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media, 151(14), Article 14. https://doi.org/10.1007/s11242-024-02125-5
    39. Shokri, J., Ruf, M., Lee, D., Mohammadrezaei, S., Steeb, H., & Niasar, V. (2024). Exploring Carbonate Rock Dissolution Dynamics and the Influence of Rock Mineralogy in CO2 Injection. Environmental Science & Technology, 58, 2728–2738. https://doi.org/10.1021/acs.est.3c06758
    40. Stierle, R., Bauer, G., Thiele, N., Bursik, B., Rehner, P., & Gross, J. (2024). Classical density functional theory in three dimensions with GPU-accelerated automatic differentiation: Computational performance analysis using the example of adsorption in covalent-organic frameworks. Chemical Engineering Science, 298, 120380. https://doi.org/10.1016/j.ces.2024.120380
    41. Straub, A., Karadimitriou, N., Reina, G., Frey, S., Steeb, H., & Ertl, T. (2024). Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs. IEEE Transactions on Visualization and Computer Graphics, 30(1), Article 1. https://doi.org/10.1109/TVCG.2023.3326931
    42. Straub, A., Sadlo, F., & Ertl, T. (2024). Feature-based deformation for flow visualization. Journal of Visualization, 27, 795–817. https://doi.org/10.1007/s12650-024-00963-5
    43. Strohbeck, P., & Rybak, I. (2024). Efficient preconditioners for coupled Stokes-Darcy problems with MAC scheme: Spectral analysis and numerical study. In arXiv preprint arXiv:2404.18639. https://doi.org/10.48550/arXiv.2404.18639
    44. Tovey, S., Krippendorf, S., Spannowsky, M., Nikolaou, K., & Holm, C. (2024). Collective variables of neural networks: empirical time evolution and scaling laws. In arXiv preprint arXiv:2410.07451. https://doi.org/10.48550/arXiv.2410.07451
    45. Tovey, S., Lohrmann, C., & Holm, C. (2024). Emergence of chemotactic strategies with multi-agent reinforcement learning. Machine Learning: Science and Technology, 5. https://doi.org/10.1088/2632-2153/ad5f73
    46. Tovey, S., Lohrmann, C., Merkt, T., Zimmer, D., Nikolaou, K., Koppenhöfer, S., Bushmakina, A., Scheunemann, J., & Holm, C. (2024). Swarmrl: building the future of smart active systems. In arXiv preprint arXiv:2404.16388. https://doi.org/10.48550/arXiv.2404.16388
    47. Trivedi, Z., Wychowaniec, J. K., Gehweiler, D., Sprecher, C. M., Boger, A., Gueorguiev, B., D’Este, M., Ricken, T., & Roöhrle, O. (2024). Rheological Analysis and Evaluation of Measurement Techniques for Curing Poly (Methyl Methacrylate) Bone Cement in Vertebroplasty. ACS Biomaterials Science & Engineering, 10(7), Article 7. https://doi.org/10.1021/acsbiomaterials.4c00417
    48. Vahid Dastjerdi, S., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2024). Formation of Common Preferential Two-Phase Displacement Pathways in Porous Media. Water Resources Research, 60. https://doi.org/10.1029/2024wr037266
    49. Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow-Porous Medium System. Transport in Porous Media, 151. https://doi.org/10.1007/s11242-024-02123-7
    50. Wachsmann, S. B., Ruf, M., Prinz, C., Oehlsen, N., Zhou, X., Dyballa, M., Arweiler, C., Leistner, P., Steeb, H., Garrecht, H., Laschat, S., & Stegbauer, L. (2024). Chitin/Chitosan Biocomposite Foams with Chitins from Different Organisms for Sound Absorption. ACS Sustainable Chemistry & Engineering, 12, 11879–11890. https://doi.org/10.1021/acssuschemeng.4c00044
    51. Wang, J., Sonntag, A., Lee, D., Xotta, G., Salomoni, V. A., Steeb, H., Wagner, A., & Ehlers, W. (2024). Modelling and simulation of natural hydraulic fracturing applied to experiments on natural sandstone cores. Acta Geotechnica, 19, 7709–7725. https://doi.org/10.1007/s11440-024-02351-7
    52. Wang, W., Zhang, X., Bezgin, D., Buhendwa, A., Chu, X., & Weigand, B. (2024). JAX-based differentiable fluid dynamics on GPU and end-to-end optimization. In arXiv preprint arXiv:2406.19494. https://doi.org/10.48550/arXiv.2406.19494
    53. Yang, G., Xu, R., Tian, Y., Guo, S., Wu, J., & Chu, X. (2024). Data-driven methods for flow and transport in porous media: a review. In arXiv preprint arXiv:2406.19939. https://doi.org/10.48550/arXiv.2406.19939
  3. 2023

    1. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160, 104371. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
    2. Bauer, R., Ngo, Q. Q., Reina, G., Frey, S., Flemisch, B., Hauser, H., Ertl, T., & Sedlmair, M. (2023). Visual Ensemble Analysis of Fluid Flow in Porous Media Across Simulation Codes and Experiment. Transport in Porous Media, 151. https://doi.org/10.1007/s11242-023-02019-y
    3. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870. https://doi.org/10.1016/j.cma.2022.115870
    4. Brünnette, T., Werneck, L., Nowak, W., & Keip, M.-A. (2023). Randomizing fracture models through energy-based direction sampling. AGU Fall Meeting 2023 Abstracts.
    5. Buntic, I., Coltman, E., Flemisch, B., Ghosh, T., Gläser, D., Grüninger, C., Hommel, J., Keim, L., Kelm, M., Koch, T., Kostelecky, A. M., Lipp, M., Oukili, H., Schneider, M., Utz, M., Wang, Y., Weishaupt, K., Wendel, K., Winter, R., & Wu, H. (2023). DuMux 3.8.0. DaRUS. https://doi.org/10.18419/DARUS-3788
    6. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Computer Methods in Applied Mechanics and Engineering, 403. https://doi.org/10.1016/j.cma.2022.115699
    7. Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. SIAM Journal on Scientific Computing, 45, A1519–A1544. https://doi.org/10.1137/22M1510406
    8. Bürkner, P.-C., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms. Journal of Computational Physics, 488. https://doi.org/10.1016/j.jcp.2023.112210
    9. Dastjerdi, S. V., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2023). Experimental evaluation of fluid connectivity in two-phase flow in porous media. Advances in Water Resources, 172, 104378. https://doi.org/10.1016/j.advwatres.2023.104378
    10. Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2023). Evaluation of tools for describing, reproducing and reusing scientific workflows. Ing.Grid, 1. https://doi.org/10.48694/inggrid.3726
    11. Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of generalized interface conditions for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (Vol. 432, pp. 275–283). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_22
    12. Ehlers, W. (2023). A historical review on porous-media research. Proceedings in Applied Mathematics and Mechanics, 23, e202300271. https://doi.org/10.1002/pamm.202300271
    13. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM Journal on Scientific Computing, 45, A49–A73. https://doi.org/10.1137/21m1415005
    14. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Reservoir characterization by push-pull tests employing kinetic interface sensitive tracers - a pore-scale study for understanding large-scale processes. Advances in Water Resources, 174, 104424. https://doi.org/10.1016/j.advwatres.2023.104424
    15. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions. Transport in Porous Media, 146(3), Article 3. https://doi.org/10.1007/s11242-022-01879-0
    16. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG-Water Mixtures. The Journal of Physical Chemistry B, 127(25), Article 25. https://doi.org/10.1021/acs.jpcb.3c01646
    17. Gravelle, S., Haber-Pohlmeier, S., Mattea, C., Stapf, S., Holm, C., & Schlaich, A. (2023). NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39, 7548–7556. https://doi.org/10.1021/acs.langmuir.3c00036
    18. Hermann, F., Michalowski, A., Brünnette, T., Reimann, P., Vogt, S., & Graf, T. (2023). Data-Driven prediction and uncertainty quantification of process parameters for directed energy deposition. Materials, 16(23), Article 23. https://doi.org/10.3390/ma16237308
    19. Härter, J., Martínez, D. S., Poser, R., Weigand, B., & Lamanna, G. (2023). Coupling between a turbulent outer flow and an adjacent porous medium: High resolved Particle Image Velocimetry measurements. Physics of Fluids, 35(2), Article 2. https://doi.org/10.1063/5.0132193
    20. Kelm, M., Ackermann, S., Buntic, I., Coltman, E., Flemisch, B., Gläser, D., Grüninger, C., Heck, K., Hommel, J., Keim, L., Kiemle, S., Koch, T., Lipp, M., Schneider, M., Schollenberger, T., Stadler, L., Utz, M., Veyskarami, M., Wang, Y., … Wu, H. (2023). DuMux 3.6.0. DaRUS. https://doi.org/10.18419/DARUS-3247
    21. Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable water isotopologue fractionation during soil-water evaporation: Analysis using a coupled soil-atmosphere model. Water Resources Research. https://doi.org/10.1029/2022WR032385
    22. Kohlhaas, R., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator: concept for bias correction, assessment of surrogate reliability and its application to the carbon dioxide benchmark. Computational Geosciences, 27, 369–389. https://doi.org/10.1007/s10596-023-10199-1
    23. Kröker, I., Oladyshkin, S., & Rybak, I. (2023). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Computational Geosciences, 27, 805–827. https://doi.org/10.1007/s10596-023-10236-z
    24. Köppl, T., & Helmig, R. (2023). Dimension Reduced Modeling of Blood Flow in Large Arteries: An Introduction for Master Students and First Year Doctoral Students. In Mathematical Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-031-33087-2
    25. Lee, D., Weinhardt, F., Hommel, J., Piotrowski, J., Class, H., & Steeb, H. (2023). Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-37523-0
    26. Liu, Y., Wang, W., Yang, G., Nemati, H., & Chu, X. (2023). The interfacial modes and modal causality in a dispersed bubbly turbulent flow. Physics of Fluids, 35(8), Article 8. https://doi.org/10.1063/5.0159886
    27. Lohrmann, C., & Holm, C. (2023). Optimal motility strategies for self-propelled agents to explore porous media. Phys. Rev. E, 108. https://doi.org/10.1103/PhysRevE.108.054401
    28. Lohrmann, C., & Holm, C. (2023). A novel model for biofilm initiation in porous media flow. Soft Matter, 19, 6920–6928. https://doi.org/10.1039/D3SM00575E
    29. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences, 27. https://doi.org/10.1007/s10596-023-10228-z
    30. Mouris, K., Espinoza, E. A., Schwindt, S., Mohammadi, F., Haun, S., Wieprecht, S., & Oladyshkin, S. (2023). Stability criteria for Bayesian calibration of reservoir sedimentation models. Modeling Earth Systems and Environment, 9, 3643–3661. https://doi.org/10.1007/s40808-023-01712-7
    31. Müller, J., Weigand, B., Wu, H., Schneider, M., & Helmig, R. (2023). Direct Numerical Simulations of turbulent flows over a water saturated porous medium: How two phase pore flow forms roughness at a permeable surface. Proceedings of the InterPore 2023 Conference.
    32. Oladyshkin, S., Praditia, T., Kroeker, I., Mohammadi, F., Nowak, W., & Otte, S. (2023). The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory. Neural Networks, 166, 85–104. https://doi.org/10.1016/j.neunet.2023.06.036
    33. Oukili, H., Ackermann, S., Buntic, I., Class, H., Coltman, E., Flemisch, B., Ghosh, T., Gläser, D., Grüninger, C., Hommel, J., Jupe, T., Keim, L., Kelm, M., Kiemle, S., Koch, T., Kostelecky, A. M., Pallam, H. V., Schneider, M., Stadler, L., … Wu, H. (2023). DuMux 3.7.0. DaRUS. https://doi.org/10.18419/DARUS-3405
    34. Reina, G. (2023). Can Image Data Facilitate Reproducibility of Graphics and Visualizations? Toward a Trusted Scientific Practice. IEEE Computer Graphics and Applications, 43. https://doi.org/10.1109/MCG.2023.3241819
    35. Ruf, M., Lee, D., & Steeb, H. (2023). A multifunctional mechanical testing stage for micro X-ray computed tomography. Review of Scientific Instruments, 94. https://doi.org/10.1063/5.0153042
    36. Schmidt, P., Steeb, H., & Renner, J. (2023). Diagnosing Hydro-Mechanical Effects in Subsurface Fluid Flow Through Fractures. Pure and Applied Geophysics, 180, 2841–2860. https://doi.org/10.1007/s00024-023-03304-z
    37. Schneider, M., Glaeser, D., Weishaupt, K., Coltman, E., Flemisch, B., & Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics, 482. https://doi.org/10.1016/j.jcp.2023.112042
    38. Schwindt, S., Medrano, S. C., Mouris, K., Beckers, F., Haun, S., Nowak, W., Wieprecht, S., & Oladyshkin, S. (2023). Bayesian calibration points to misconceptions in three-dimensional hydrodynamic reservoir modeling. Water Resources Research, 59. https://doi.org/10.1029/2022WR033660
    39. Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numerical Methods for Partial Differential Equations, 39, 622–656. https://doi.org/10.1002/num.22906
    40. Sonntag, A. (2023). Partially saturated porous solids under dynamic hydraulic fracturing. Dissertation thesis, University of Stuttgart. https://doi.org/10.18419/opus-14201
    41. Sonntag, A., Wagner, A., & Ehlers, W. (2023). Dynamic hydraulic fracturing in partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 414. https://doi.org/10.1016/j.cma.2023.116121
    42. Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and efficient preconditioners for Stokes-Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (Vol. 432, pp. 375–383). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_32
    43. Strohbeck, P., Eggenweiler, E., & Rybak, I. (2023). A modification of the Beavers-Joseph Condition for Arbitrary Flows to the Fluid-porous Interface. Transport in Porous Media, 147, 605–628. https://doi.org/10.1007/s11242-023-01919-3
    44. Taghizadeh, K., Ruf, M., Luding, S., & Steeb, H. (2023). X-ray 3D imaging-based microunderstanding of granular mixtures: Stiffness enhancement by adding small fractions of soft particles. Proceedings of the National Academy of Sciences of the United States of America, 120. https://doi.org/10.1073/pnas.2219999120
    45. Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59(12), Article 12. https://doi.org/10.1029/2023WR035387
    46. Tovey, S., Zills, F., Torres-Herrador, F., Lohrmann, C., Brückner, M., & Holm, C. (2023). MDSuite: comprehensive post-processing tool for particle simulations. Journal of Cheminformatics, 15. https://doi.org/10.1186/s13321-023-00687-y
    47. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev, B., Wagner, A., & Röhrle, O. (2023). A continuum mechanical porous media model for vertebroplasty: Numerical simulations and experimental validation. Biomechanics and Modeling in Mechanobiology, 22(4), Article 4. https://doi.org/10.1007/s10237-023-01715-4
    48. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2023). Analysing the bone cement flow in the injection apparatus during vertebroplasty. Proceedings in Applied Mathematics and Mechanics, 23. https://doi.org/10.1002/pamm.202200295
    49. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-Flow-Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149. https://doi.org/10.1007/s11242-023-01944-2
    50. Völter, J.-S. L., Ricken, T., & Röhrle, O. (2023). About the applicability of the theory of porous media for the modelling of non-isothermal material injection into porous structures. Proceedings in Applied Mathematics and Mechanics, 23. https://doi.org/10.1002/pamm.202200070
    51. Wagner, A., Sonntag, A., Reuschen, S., Nowak, W., & Ehlers, W. (2023). Hydraulically induced fracturing in heterogeneous porous media using a TPM-phase-field model and geostatistics. Proceedings in Applied Mathematics and Mechanics, 23. https://doi.org/10.1002/pamm.202200118
    52. Wieboldt, R., Lindt, K., Pohlmeier, A., Mattea, C., Stapf, S., & Haber-Pohlmeier, S. (2023). Effects of Salt Precipitation in the Topmost Soil Layer Investigated by NMR. Applied Magnetic Resonance, 54, 1607–1631. https://doi.org/10.1007/s00723-023-01568-1
    53. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media, 151. https://doi.org/10.1007/s11242-023-02031-2
    54. Zhuang, L., Hassanizadeh, S. M., & Qin, C.-Z. (2023). Experimental determination of in-plane permeability of nonwoven thin fibrous materials. Textile Research Journal, 93(19–20), Article 19–20. https://doi.org/10.1177/00405175231181089
  4. 2022

    1. Ahmadi, N., Muniruzzaman, M., Sprocati, R., Heck, K., Mosthaf, K., & Rolle, M. (2022). Coupling soil/atmosphere interactions and geochemical processes: A multiphase and multicomponent reactive transport approach. Advances in Water Resources, 169, 104303. https://doi.org/10.1016/j.advwatres.2022.104303
    2. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2022). Flux-Mortar Mixed Finite Element Methods on Non-Matching Grids. SIAM Journal on Numerical Analysis, 60(3), Article 3. https://doi.org/10.1137/20M1361407
    3. Brecher, C., Buchmeiser, M. R., Burkert, A., Busemeyer, M. R., Conermann, S., Ertl, T., Friedrich, M., Helmig, R., Hohmann, V., Johnston, A. J., Kollmeier, B., Larkum, M., Louis, J., Menges, A., Morgner, U., Müller, J., Niessen, C., Ohlberger, M., Schäffner, W., … Flemisch, B. (2022). Commitment zu aktivem Daten- und -softwaremanagement in großen Forschungsverbünden: Commitment to active data and software management in large research alliances. Bausteine Forschungsdatenmanagement, 1, 121–123. https://doi.org/10.17192/bfdm.2022.1.8412
    4. Bringedal, C., Pieters, G. J. M., & van Duijn, C. J. (2022). Eigenvalue problem solver for evaporation-driven density instabilities in saturated porous media. DaRUS. https://doi.org/10.18419/DARUS-2577
    5. Bringedal, C. (2022). Multiscale modeling and simulation of transport processes in porous media. Habilitation thesis, University of Stuttgart. https://doi.org/10.18419/opus-12829
    6. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-driven density instabilities in saturated porous media. Transport in Porous Media, 143(2), Article 2. https://doi.org/10.1007/s11242-022-01772-w
    7. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. Journal of Open Source Software, 7. https://doi.org/10.21105/joss.03959
    8. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2022.111031
    9. Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function Kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), Article 3. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021035851
    10. Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., & et mult. (2022). preCICE v2: A sustainable and user-friendly coupling library. Open Research Europe, 2(51), Article 51. https://doi.org/10.12688/openreseurope.14445.2
    11. Eggenweiler, E. (2022). Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation. Dissertation thesis, University of Stuttgart. https://doi.org/10.18419/opus-12573
    12. Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM: Mathematical Modelling and Numerical Analysis, 56, 727–742. https://doi.org/10.1051/m2an/2022025
    13. Ehlers, W., Sonntag, A., & Wagner, A. (2022). On Hydraulic Fracturing in Fully and Partially Saturated Brittle Porous Material. In F. Aldakheel, B. Hudobivnik, M. Soleimani, H. Wessels, C. Weißenfels, & M. Marino (Eds.), Current Trends and Open Problems in Computational Mechanics (pp. 111–119). Springer International Publishing. https://doi.org/10.1007/978-3-030-87312-7_12
    14. Eller, J., Sauerborn, T., Becker, B., Buntic, I., Gross, J., & Helmig, R. (2022). Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC-SAFT Equation of State. Water Resources Research, 58(4), Article 4. https://doi.org/10.1029/2021WR030885
    15. Eurich, L., Schott, R., Shahmoradi, S., Wagner, A., Borja, R. I., Roth-Nebelsick, A., & Ehlers, W. (2022). A thermodynamically consistent quasi-double-porosity thermo-hydro-mechanical model for cell dehydration of plant tissues at subzero temperatures. Archive of Applied Mechanics, 92, 529–557. https://doi.org/10.1007/s00419-021-01947-9
    16. Frey, S. (2022). Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections. Computer Graphics Forum, 41, 247–258. https://doi.org/10.1111/cgf.14537
    17. Gander, M. J., Lunowa, S. B., & Rohde, C. (2022). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443–450). Springer International Publishing. https://doi.org/10.1007/978-3-030-95025-5_47
    18. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2022). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 448. https://doi.org/10.1016/j.jcp.2021.110715
    19. Gonzalez‑Nicolas, A., Bilgic, D., Kröker, I., Mayar, A., Trevisan, L., Steeb, H., Wieprecht, S., & Nowak, W. (2022). Optimal exposure time in gamma-ray attenuation experiments for monitoring time-dependent densities. Transport in Porous Media, 143, 463–496. https://doi.org/10.1007/s11242-022-01777-5
    20. Gravelle, S., Holm, C., & Schlaich, A. (2022). Transport of thin water films: from thermally activated random walks to hydrodynamics. The Journal of Chemical Physics, 157. https://doi.org/10.1063/5.0099646
    21. Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure-Saturation Relations. Minerals, 12. https://doi.org/10.3390/min12101186
    22. Kienle, D. (2022). Phase-field modeling of multi-field problems with applications to hydraulic-elastic-plastic fracturing. Dissertation thesis, University of Stuttgart. https://doi.org/10.18419/opus-12897
    23. Kienle, D., & Keip, M.-A. (2022). A variational minimization formulation for hydraulically induced fracturing in elastic-plastic solids. International Journal of Fracture, 237, 203–227. https://doi.org/10.1007/s10704-021-00535-w
    24. Kloker, L., & Bringedal, C. (2022). Code for: Solution approaches for evaporation-driven density instabilities in a slab of saturated porous media. DaRUS. https://doi.org/10.18419/DARUS-3057
    25. Kloker, L. H., & Bringedal, C. (2022). Solution approaches for evaporation-driven density instabilities in a slab of saturated porous media. Physics of Fluids, 34. https://doi.org/10.1063/5.0110129
    26. Koch, T. (2022). Projection-based resolved interface 1D-3D mixed-dimension method for embedded tubular network systems. Computers & Mathematics with Applications, 109, 15–29. https://doi.org/10.1016/j.camwa.2022.01.021
    27. Kröker, I., & Oladyshkin, S. (2022). Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification. Reliability Engineering & System Safety, 222. https://doi.org/10.1016/j.ress.2022.108376
    28. Kurzeja, P., & Steeb, H. (2022). Acoustic waves in saturated porous media with gas bubbles. Philosophical Transactions of the Royal Society A, 380. https://doi.org/10.1098/rsta.2021.0370
    29. Lee, D., Karadimitriou, N. K., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13, 1475–1494. https://doi.org/10.5194/se-13-1475-2022
    30. Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (2022). Dynamic effects during the capillary rise of fluids in cylindrical tubes. Langmuir, 38(5), Article 5. https://doi.org/10.1021/acs.langmuir.1c02680
    31. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media, 144(2), Article 2. https://doi.org/10.1007/s11242-022-01813-4
    32. Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of two phase flow in a hydrophobic porous medium interacting with a hydrophilic structure. Transport in Porous Media, 144(2), Article 2. https://doi.org/10.1007/s11242-022-01816-1
    33. Schmidt, F., Krüger, M., Keip, M.-A., & Hesch, C. (2022). Computational homogenization of higher-order continua. International Journal for Numerical Methods in Engineering, 123, 2499–2529. https://doi.org/10.1002/nme.6948
    34. Schmidt, P., Jaust, A., Steeb, H., & Schulte, M. (2022). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Computational Geosciences, 26, 381–400. https://doi.org/10.1007/s10596-021-10120-8
    35. Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media, 141, 737–769. https://doi.org/10.1007/s11242-022-01746-y
    36. Sharmin, S., Bastidas, M., Bringedal, C., & Pop, I. S. (2022). Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects. Applicable Analysis, 101, 4171–4193. https://doi.org/10.1080/00036811.2022.2052858
    37. Straub, A., Boblest, S., Karch, G. K., Sadlo, F., & Ertl, T. (2022). Droplet-Local Line Integration for Multiphase Flow. 2022 IEEE Visualization and Visual Analytics (VIS), 135–139. https://doi.org/10.1109/VIS54862.2022.00036
    38. Swamynathan, S., Jobst, S., Kienle, D., & Keip, M.-A. (2022). Phase-field modeling of fracture in strain-hardening elastomers: Variational formulation, multiaxial experiments and validation. Engineering Fracture Mechanics, 265. https://doi.org/10.1016/j.engfracmech.2022.108303
    39. Tsinober, A., Rosenzweig, R., Class, H., Helmig, R., & Shavit, U. (2022). The Role of Mixed Convection and Hydrodynamic Dispersion During CO2 Dissolution in Saline Aquifers: A Numerical Study. Water Resources Research, 58(3), Article 3. https://doi.org/10.1029/2021WR030494
    40. Valavanides, M. S., Karadimitriou, N. K., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. SPWLA 63rd Annual Logging Symposium, Stavanger, Norway, June 2022. https://doi.org/10.30632/SPWLA-2022-0054
    41. van Westen, T., Hammer, M., Hafskjold, B., Aasen, A., Gross, J., & Wilhelmsen, Ø. (2022). Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. The Journal of Chemical Physics, 156(10), Article 10. https://doi.org/10.1063/5.0082690
    42. von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn-Hilliard Navier-Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941. https://doi.org/10.1017/jfm.2022.308
    43. Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), Article 6. https://doi.org/10.1029/2021wr030426
    44. Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949. https://doi.org/10.1017/jfm.2022.770
    45. Weinhardt, F., Deng, J., Hommel, J., Dastjerdi, S. V., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity-Permeability Relationships. Transport in Porous Media, 143, 527–549. https://doi.org/10.1007/s11242-022-01782-8
    46. Weishaupt, K., Koch, T., & Helmig, R. (2022). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 40(4), Article 4. https://doi.org/10.1080/07373937.2021.1955706
    47. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust upwind mixed hybrid finite element method for transport in variably saturated porous media. Hydrology and Earth System Sciences, 26(20), Article 20. https://doi.org/10.5194/hess-26-5227-2022
    48. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust fully mixed finite element model for flow and transport in unsaturated fractured porous media. Advances in Water Resources, 166. https://doi.org/10.1016/j.advwatres.2022.104259
    49. Zech, A., & de Winter, M. (2022). A Probabilistic Formulation of the Diffusion Coefficient in Porous Media as Function of Porosity. Transport in Porous Media, 146. https://doi.org/10.1007/s11242-021-01737-5
  5. 2021

    1. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429. https://doi.org/10.1016/j.jcp.2020.109993
    2. Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences. https://doi.org/10.1007/s10596-021-10057-y
    3. Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital rock physics: A geological driven workflow for the segmentation of anisotropic Ruhr sandstone. Front. Earth Sci., 9, 673753.
    4. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147. https://doi.org/10.1016/j.advwatres.2020.103759
    5. Bringedal, C. (2021). Data and code for Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. DaRUS. https://doi.org/10.18419/DARUS-1376
    6. Chow, R., Parker, B., Steelman, C., Thoms, A., & Nowak, W. (2021). How do fractures influence hyporheic exchange in sedimentary rock riverbeds? Water Resources Research, 57. https://doi.org/10.1029/2020WR028476
    7. Chu, X., Müller, J., & Weigand, B. (2021). Interface-Resolved Direct Numerical Simulation of Turbulent Flow over Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 343--354). Springer International Publishing.
    8. Chu, X., Wang, W., Müller, J., Von Schöning, H., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 373--386). Springer International Publishing.
    9. Class, H., Bürkle, P., Sauerborn, T., Trötschler, O., Strauch, B., & Zimmer, M. (2021). On the role of density-driven dissolution of CO2 in phreatic karst systems. Water Resources Research, 57. https://doi.org/10.1029/2021WR030912
    10. Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Modeling and Simulation, 19, 731--757. https://doi.org/10.1137/20M1346638
    11. Ehlers, W., Sonntag, A., & Wagner, A. (2021). Hydraulic fracturing under fully and partially saturated conditions. Published in Accordance with the Decision of the Academic Council of the State Higher Educational Institution “Donetsk National Technical University,” 1, 47--51. https://doi.org/10.31474/2074-7888-2021-1-47-51
    12. Eller, J., Matzerath, T., van Westen, T., & Gross, J. (2021). Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. The Journal of Chemical Physics, 154(24), Article 24. https://doi.org/10.1063/5.0051201
    13. Erfani, H., Karadimitriou, N. K., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media, 140, 421--435. https://doi.org/10.1007/s11242-021-01655-6
    14. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2021). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 41, 243--256. https://doi.org/10.1111/cgf.14432
    15. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 157. https://doi.org/10.1016/j.advwatres.2021.104044
    16. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2021). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 110715. https://doi.org/10.1016/j.jcp.2021.110715
    17. Haide, R., Fest-Santini, S., & Santini, M. (2021). Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review. Drying Technology, 1--14. https://doi.org/10.1080/07373937.2021.1876723
    18. Jaust, A., & Schmidt, P. (2021). Replication Data for: Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. DaRUS. https://doi.org/10.18419/DARUS-1778
    19. Jaust, A., Weishaupt, K., Flemisch, B., & Schulte, M. (2021). Replication Data for: Partitioned coupling schemes for free-flow and porous-media applications with sharp interfaces. DaRUS. https://doi.org/10.18419/DARUS-1644
    20. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2021). DuMux 3 - an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423--443. https://doi.org/10.1016/j.camwa.2020.02.012
    21. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01602-5
    22. Koch, T., Wu, H., & Schneider, M. (2021). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 110823. https://doi.org/10.1016/j.jcp.2021.110823
    23. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter, 17, 893--902. https://doi.org/10.1039/D0SM01595D
    24. Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, 147, 84--126. https://doi.org/10.1111/sapm.12376
    25. Olivares, M. B., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396. https://doi.org/10.1016/j.amc.2020.125933
    26. Polukhov, E., & Keip, M.-A. (2021). On the Computational Homogenization of Deformation-Diffusion Processes. Proceedings in Applied Mathematics and Mechanics, 20. https://doi.org/10.1002/pamm.202000293
    27. Reuschen, S., Jobst, F., & Nowak, W. (2021). Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC. Water Resources Research, 57. https://doi.org/10.1029/2021wr030051
    28. Reuschen, S., Nowak, W., & Guthke, A. (2021). The four ways to consider measurement noise in Bayesian model selection - and which one to choose. Water Resources Research, 57. https://doi.org/10.1029/2021WR030391
    29. Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., & Uekermann, B. (2021). FEniCS-preCICE: Coupling FEniCS to other simulation software. SoftwareX, 16. https://doi.org/10.1016/j.softx.2021.100807
    30. Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Computational Geosciences, 25, 621--635. https://doi.org/10.1007/s10596-020-09994-x
    31. Rüth, B., Uekermann, B., Mehl, M., Birken, P., Monge, A., & Bungartz, H.-J. (2021). Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications. International Journal for Numerical Methods in Engineering, 122(19), Article 19. https://doi.org/10.1002/nme.6443
    32. Scheurer, S., Silva, A. S. R., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation. Computational Geosciences, 25, 1899--1917. https://doi.org/10.1007/s10596-021-10076-9
    33. Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas-Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials, 21, 237--245. https://doi.org/10.1038/s41563-021-01121-0
    34. Scholz, L., & Bringedal, C. (2021). Code for effective heat conductivity in thin porous media. DaRUS. https://doi.org/10.18419/DARUS-2026
    35. Schulz, S., Bringedal, C., & Ackermann, S. (2021). Code for relative permeabilities for two-phase flow between parallel plates with slip conditions. DaRUS. https://doi.org/10.18419/DARUS-2241
    36. Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor-Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11. https://doi.org/10.3390/app11020682
    37. Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13. https://doi.org/10.3390/w13030383
    38. Sonntag, A., Wagner, A., & Ehlers, W. (2021). Modelling fluid-driven fractures for partially saturated porous materials. Proceedings in Applied Mathematics and Mechanics, 20. https://doi.org/10.1002/pamm.202000033
    39. Stierle, R., & Gross, J. (2021). Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. The Journal of Chemical Physics, 155(13), Article 13. https://doi.org/10.1063/5.0060088
    40. Trivedi, Z., Bleiler, C., Gehweiler, D., Gueorguiev-Rüegg, B., Ricken, T., Wagner, A., & Röhrle, O. (2021). Simulating vertebroplasty: A biomechanical challenge. Proceedings in Applied Mathematics and Mechanics, 20. https://doi.org/10.1002/pamm.202000313
    41. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137, 327--343. https://doi.org/10.1007/s11242-021-01560-y
    42. Wagner, A. (2021). Continuum Mechanics of Multicomponent Materials - Modelling, Numerics and Applications for Biological Materials in the Framework of the Theory of Porous Media. Habilitation thesis, University of Stuttgart. https://doi.org/10.18419/opus-11808
    43. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138, 1--23. https://doi.org/10.1007/s11242-021-01586-2
    44. Wang, W. (王文康), Yang, G. (杨光), Evrim, C., Terzis, A., Helmig, R., & Chu, X. (初旭). (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33(11), Article 11. https://doi.org/10.1063/5.0069311
    45. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N. K., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57. https://doi.org/10.1029/2020wr029361
    46. Weishaupt, K., & Helmig, R. (2021). A dynamic and fully implicit non-isothermal, two-phase, two-component pore-network model coupled to single-phase free flow for the pore-scale description of evaporation processes. Water Resources Research. https://doi.org/10.1029/2020wr028772
    47. Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Hendricks Franssen, H.-J. (2021). Bayesian Inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: An extension of preconditioned Crank-Nicolson Markov Chain Monte Carlo with parallel tempering. Water Resources Research, 57. https://doi.org/10.1029/2021WR030313
    48. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-83065-8
    49. Zeman, J., Kondrat, S., & Holm, C. (2021). Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20), Article 20. https://doi.org/10.1063/5.0069340
  6. 2020

    1. Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/draa064
    2. Bahlmann, L. M., Smits, K., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport across the Soil-Atmosphere-Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research. https://doi.org/10.1029/2020wr027600
    3. Boon, W. M., & Nordbotten, J. M. (2020). Stable mixed finite elements for linear elasticity with thin inclusions. Computational Geosciences. https://doi.org/10.1007/s10596-020-10013-2
    4. Boon, W. M. (2020). A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation. ESAIM: Mathematical Modelling and Numerical Analysis, 54(6), Article 6. https://doi.org/10.1051/m2an/2020035
    5. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11. https://doi.org/10.1038/s41467-020-19903-6
    6. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 537--545). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_50
    7. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18, 1076--1112. https://doi.org/10.1137/19m1239003
    8. Budisa, A., Boon, W. M., & Hu, X. (2020). Mixed-Dimensional Auxiliary Space Preconditioners. SIAM Journal on Scientific Computing, 42(5), Article 5. https://doi.org/10.1137/19m1292618
    9. Burbulla, S., & Rohde, C. (2020). A Fully Conforming Finite Volume Approach to Two-Phase Flow in Fractured Porous Media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 547--555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3
    10. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2020). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01506-w
    11. Chu, X., Wu, Y., Rist, U., & Weigand, B. (2020). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), Article 4. https://doi.org/10.1103/PhysRevFluids.5.044304
    12. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
    13. de Winter, D. A. M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S. M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media, 136, 343--367. https://doi.org/10.1007/s11242-020-01515-9
    14. Eggenweiler, E., & Rybak, I. (2020). Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    15. Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers-Joseph interface condition for filtration problems. Journal of Fluid Mechanics, 892. https://doi.org/10.1017/jfm.2020.194
    16. Emmert, S., Class, H., Davis, K., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229. https://doi.org/10.1016/j.coal.2020.103567
    17. Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12. https://doi.org/10.3390/w12113008
    18. Frey, S. (2020). Temporally Dense Exploration of Moving and Deforming Shapes. Computer Graphics Forum, 40, 7--21. https://doi.org/10.1111/cgf.14092
    19. Ghosh, T., Bringedal, C., Helmig, R., & R.Sekhar, G. P. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145. https://doi.org/10.1016/j.advwatres.2020.103716
    20. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56), Article 56. https://doi.org/10.21105/joss.02291
    21. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences of the United States of America, 117, 23443--23449. https://doi.org/10.1073/pnas.2011716117
    22. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
    23. Hommel, J., Akyel, A., Frieling, Z., Phillips, A., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), Article 13. https://doi.org/10.3390/app10134538
    24. Höge, M., Guthke, A., & Nowak, W. (2020). Bayesian model weighting: The many faces of model averaging. Water, 12. https://doi.org/10.3390/w12020309
    25. Jaust, A., Weishaupt, K., Mehl, M., & Flemisch, B. (2020). Partitioned coupling schemes for free-flow and porous-media applications with sharp interfaces. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 605--613). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_57
    26. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    27. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    28. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2020). Comparison of Pore-scale Capillary Pressure to Macroscale Capillary Pressure using Direct Numerical Simulations of Drainage under Dynamic and Quasi-static Conditions. Advances in Water Resources, 147. https://doi.org/10.1016/j.advwatres.2020.103792
    29. Lipp, M., & Helmig, R. (2020). A Locally-Refined Locally-Conservative Quadtree Finite-Volume Staggered-Grid Scheme. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Eds.), Droplet Interactions and Spray Processes (pp. 149--159). Springer International Publishing.
    30. Mitra, K., Köppl, T., Pop, I. S., van Duijn, C. J., & Helmig, R. (2020). Fronts in two-phase porous media flow problems: The effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 144, 449--492. https://doi.org/10.1111/sapm.12304
    31. Müller, J., Offenhäuser, P., Reitzle, M., & Weigand, B. (2020). A Method to Reduce Load Imbalances in Simulations of Solidification Processes with Free Surface 3D. In M. M. Resch, Y. Kovalenko, W. Bez, E. Focht, & H. Kobayashi (Eds.), Sustained Simulation Performance 2018 and 2019 (pp. 163--184). Springer International Publishing.
    32. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22. https://doi.org/10.3390/e22080890
    33. Piotrowski, J., Huisman, J. A., Nachshon, U., Pohlmeier, A., & Vereecken, H. (2020). Gas Permeability of Salt Crusts Formed by Evaporation from Porous Media. Geosciences, 10. https://doi.org/10.3390/geosciences10110423
    34. Polukhov, E., & Keip, M.-A. (2020). Computational homogenization of transient chemo-mechanical processes based on a variational minimization principle. Advanced Modeling and Simulation in Engineering Sciences, 7, 1--26. https://doi.org/10.1186/s40323-020-00161-6
    35. Poonoosamy, J., Haber-Pohlmeier, S., Deng, H., Deissmann, G., Klinkenberg, M., Gizatullin, B., Stapf, S., Brandt, F., Bosbach, D., & Pohlmeier, A. (2020). Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation. Minerals, 10. https://doi.org/10.3390/min10030226
    36. Reuschen, S., Xu, T., & Nowak, W. (2020). Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC. Advances in Water Resources, 141. https://doi.org/10.1016/j.advwatres.2020.103614
    37. Rohde, C., & von Wolff, L. (2020). A Ternary Cahn-Hilliard Navier-Stokes Model for two Phase Flow with Precipitation and Dissolution. Mathematical Models and Methods in Applied Sciences. https://doi.org/10.1142/s0218202521500019
    38. Rohde, C., & von Wolff, L. (2020). Homogenization of Nonlocal Navier-Stokes-Korteweg Equations for Compressible Liquid-Vapor Flow in Porous Media. SIAM Journal on Mathematical Analysis, 52, 6155--6179. https://doi.org/10.1137/19m1242434
    39. Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91. https://doi.org/10.1063/5.0019541
    40. Scheer, D., Class, H., & Flemisch, B. (2020). Subsurface Environmental Modelling Between Science and Policy. https://doi.org/10.1007/978-3-030-51178-4
    41. Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28--38. https://doi.org/10.17192/BFDM.2020.1.8085
    42. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    43. Schout, G., Hartog, N., Hassanizadeh, S. M., Helmig, R., & Griffioen, J. (2020). Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 230, 103619. https://doi.org/10.1016/j.jconhyd.2020.103619
    44. Schultze-Jena, A., Boon, M. A., de Winter, D. A. M., Bussmann, P. J. Th., Janssen, A. E. M., & van der Padt, A. (2020). Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Journal of Chromatography A, 1613, 460688. https://doi.org/10.1016/j.chroma.2019.460688
    45. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142. https://doi.org/10.1016/j.advwatres.2020.103646
    46. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), Article 2. https://doi.org/10.1029/2019wr026707
    47. Stierle, R., Sauer, E., Eller, J., Theiss, M., Rehner, P., Ackermann, P., & Gross, J. (2020). Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504, 112306. https://doi.org/10.1016/j.fluid.2019.112306
    48. van Duijn, C. J., Mikelić, A., & Wick, T. (2020). Mathematical theory and simulations of thermoporoelasticity. Computer Methods in Applied Mechanics and Engineering, 366, 113048. https://doi.org/10.1016/j.cma.2020.113048
    49. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01477-y
    50. Xu, T., Reuschen, S., Nowak, W., & Hendricks Franssen, H.-J. (2020). Preconditioned Crank-Nicolson Markov Chain Monte Carlo coupled with parallel tempering: An efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields. Water Resources Research, 56. https://doi.org/10.1029/2020wr027110
    51. Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (2020). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), Article 1. https://doi.org/10.1063/1.5139308
  7. 2019

    1. Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1--7. https://doi.org/10.5194/adgeo-49-1-2019
    2. Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
    3. Ehlers, W., & Wagner, A. (2019). Modelling and simulation methods applied to coupled problems in porous-media mechanics. Archive of Applied Mechanics, 89, 609--628. https://doi.org/10.1007/s00419-019-01520-5
    4. Eurich, L., Shahmoradi, S., Wagner, A., Borja, R., & Ehlers, W. (2019). Simulating plant-cell dehydration using a double-porosity formulation based on the Theory of Porous Media. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900243
    5. Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research, 55, 1153--1166. https://doi.org/10.1029/2018WR023554
    6. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55, 9826--9837. https://doi.org/10.1029/2018wr024252
    7. Kienle, D., Aldakheel, F., & Keip, M.-A. (2019). A finite-strain phase-field approach to ductile failure of frictional materials. International Journal of Solids and Structures, 172, 147--162. https://doi.org/10.1016/j.ijsolstr.2019.02.006
    8. Kienle, D., & Keip, M.-A. (2019). Modeling of hydraulically induced fractures in elastic-plastic solids. Proceedings in Applied Mathematics and Mechanics, 19. https://doi.org/10.1002/pamm.201900377
    9. Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2019). A Lagrange multiplier method for a discrete fracture model for flow in porous media. Computational Geosciences, 23, 239--253. https://doi.org/10.1007/s10596-018-9779-8
    10. Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150. https://doi.org/10.1063/1.5085836
    11. Oladyshkin, S., & Nowak, W. (2019). The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design. Entropy, 21. https://doi.org/10.3390/e21111081
    12. Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 130, 437--461. https://doi.org/10.1007/s11242-019-01319-6
    13. Teichtmeister, S., Mauthe, S., & Miehe, C. (2019). Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle. Computational Mechanics, 64, 685--716. https://doi.org/10.1007/s00466-019-01677-4
    14. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), Article 4. https://doi.org/10.1063/1.5092169
    15. Totounferoush, A., Ebrahimi Pour, N., Schröder, J., Roller, S., & Mehl, M. (2019). A New Load Balancing Approach for Coupled Multi-Physics Simulations. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 676--682. https://doi.org/10.1109/IPDPSW.2019.00115
    16. Trivedi, Z., Bleiler, C., Wagner, A., & Röhrle, O. (2019). A parametric permeability study for a simplified vertebra based on regular microstructures. Proceedings in Applied Mathematics and Mechanics, 19. https://doi.org/10.1002/pamm.201900383
    17. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1. https://doi.org/10.1016/j.jcpx.2019.100011
    18. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133. https://doi.org/10.1016/j.ymssp.2019.106248
    19. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers--Joseph Interface Condition for Non-parallel Coupled Channel Flow over a Porous Structure at High Reynolds Numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    20. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444--454. https://doi.org/10.1016/j.cej.2019.03.191
    21. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a Linear Array of Hydrophilic and Superhydrophobic Spheres on a Deep Water Pool. Colloids Interfaces, 3(1), Article 1. https://doi.org/10.3390/colloids3010029
    22. Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820--827. https://doi.org/10.1016/j.ces.2018.10.029
  8. 2018

    1. Chu, X., Weigand, B., & Vaikuntanathan, V. (2018). Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation. Physics of Fluids, 30(6), Article 6. https://doi.org/10.1063/1.5030651
    2. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2018). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, 23, 399--414. https://doi.org/10.1007/s10596-018-9797-6
    3. Frey, S. (2018). Spatio-Temporal Contours from Deep Volume Raycasting. Computer Graphics Forum, 37, 513--524. https://doi.org/10.1111/cgf.13438
    4. Gralka, P., Grottel, S., Staib, J., Schatz, K., Karch, G. K., Hirschler, M., Krone, M., Reina, G., Gumhold, S., & Ertl, T. (2018). 2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 38, 106--117. https://doi.org/10.1109/MCG.2017.3301120
    5. Hommel, J., Coltman, E., & Class, H. (2018). Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 124, 589--629. https://doi.org/10.1007/s11242-018-1086-2
    6. Sauer, E., Terzis, A., Theiss, M., Weigand, B., & Gross, J. (2018). Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 34(42), Article 42. https://doi.org/10.1021/acs.langmuir.8b01985
    7. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles, 73. https://doi.org/10.2516/ogst/2018064
    8. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Computer Methods in Applied Mechanics and Engineering, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    9. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2018). Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures. Transport in Porous Media, 122(1), Article 1. https://doi.org/10.1007/s11242-017-0995-9
    10. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2018). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 25, 1060--1069. https://doi.org/10.1109/TVCG.2018.2864506
  9. 2017

    1. Frey, S., & Ertl, T. (2017). Flow-Based Temporal Selection for Interactive Volume Visualization. Computer Graphics Forum, 36, 153--165. https://doi.org/10.1111/cgf.13070
  10. 2015

    1. Hommel, J., Lauchnor, E., Phillips, A., Gerlach, R., Cunningham, A. B., Helmig, R., Ebigbo, A., & Class, H. (2015). A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. Water Resources Research, 51(5), Article 5. https://doi.org/10.1002/2014WR016503
To the top of the page