List of Publications within SFB 1313
2024
- Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
- Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences, 28(3), Article 3. https://doi.org/10.1007/s10596-023-10267-6
- Bringedal, C., & Jaust, A. (2024). Phase-field modeling and effective simulation of non-isothermal reactive transport. Results in Applied Mathematics, 21, 100436. https://doi.org/10.1016/j.rinam.2024.100436
- Brodbeck, M., Egli, F. S., Suditsch, M., Seyedpour, S. M., & Ricken, T. (2024). On the influence of non-linearity within two-phase poro-elasticity: Numerical examples and counterexamples. Examples and Counterexamples, 6, 100167. https://doi.org/10.1016/j.exco.2024.100167
- Bruennette, T., & Nowak, W. (2024). Efficient Inference for Non-Deterministic Fractures. GeoENV2024 Book of Abstracts, 67--68.
- Bursik, B., Eller, J., & Gross, J. (2024). Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State. The Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.3c07447
- Gadirov, H., Roerdink, J. B. T. M., & Frey, S. (2024). FLINT: Learning-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization. https://arxiv.org/abs/2409.19178
- Gao, H., Abdullah, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., Zhou, D., Liu, Q., & Sauter, M. (2024). Pore-scale study of the effects of grain size on the capillary-associated interfacial area during primary drainage. Journal of Hydrology, 632, 130865. https://doi.org/10.1016/j.jhydrol.2024.130865
- Hörl, M., & Rohde, C. (2024). Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture. Networks and Heterogeneous Media, 19(1), Article 1. https://doi.org/10.3934/nhm.2024006
- Jannesarahmadi, S., Aminzadeh, M., Helmig, R., Or, D., & Shokri, N. (2024). Quantifying Salt Crystallization Impact on Evaporation Dynamics From Porous Surfaces. Geophysical Research Letters, 51(22), Article 22. https://doi.org/10.1029/2024gl111080
- Krach, D., Ruf, M., & Steeb, H. (2024). POREMAPS 1.0.0: Code, Benchmarks, Applications. https://doi.org/10.18419/darus-3676
- Lee, D., Ruf, M., Karadimitriou, N., Steeb, H., Manousidaki, M., Varouchakis, E. A., Tzortzakis, S., & Yiotis, A. (2024). Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-60075-w
- Lohrmann, C., Holm, C., & Datta, S. S. (2024). Influence of bacterial swimming and hydrodynamics on attachment of phages. Soft Matter. https://doi.org/10.1039/D4SM00060A
- Mel’nyk, T., & Rohde, C. (2024). Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains. Nonlinear Differential Equations and Applications NoDEA, 31(6), Article 6. https://doi.org/10.1007/s00030-024-00997-6
- Mel’nyk, T. A., & Rohde, C. (2024). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. Journal of Mathematical Analysis and Applications, 529(1), Article 1. https://doi.org/10.1016/j.jmaa.2023.127587
- Mel’nyk, T., & Rohde, C. (2024). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. Analysis and Applications, 22(05), Article 05. https://doi.org/10.1142/s0219530524500040
- Mel’nyk, T., & Rohde, C. (2024). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions. Asymptotic Analysis, 137(1–2), Article 1–2. https://doi.org/10.3233/asy-231876
- Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 1–26. https://doi.org/10.1080/00036811.2024.2322644
- Nordbotten, J. M., Ferno, M. A., Flemisch, B., Kovscek, A. R., & Lie, K.-A. (2024). The 11th Society of Petroleum Engineers Comparative Solution Project: Problem Definition. SPE Journal, 1–18. https://doi.org/10.2118/218015-pa
- Nordbotten, J. M., Fernø, M., Flemisch, B., Juanes, R., & Jørgensen, M. (2024). Experimentally assessing the uncertainty of forecasts of geological carbon storage. International Journal of Greenhouse Gas Control, 135, 104162. https://doi.org/10.1016/j.ijggc.2024.104162
- Nowak, W., Brünnette, T., Schalkers, M., & Möller, M. (2024). Overdispersion in gate tomography: Experiments and continuous, two-scale random walk model on the Bloch sphere. https://arxiv.org/abs/2407.03970
- Pelzer, J., & Schulte, M. (2024). Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks. Geoenergy Science and Engineering, 237, 212788. https://doi.org/10.1016/j.geoen.2024.212788
- Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02125-5
- Shokri, J., Ruf, M., Lee, D., Mohammadrezaei, S., Steeb, H., & Niasar, V. (2024). Exploring Carbonate Rock Dissolution Dynamics and the Influence of Rock Mineralogy in CO2 Injection. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c06758
- Stierle, R., Bauer, G., Thiele, N., Bursik, B., Rehner, P., & Gross, J. (2024). Classical density functional theory in three dimensions with GPU-accelerated automatic differentiation: Computational performance analysis using the example of adsorption in covalent-organic frameworks. Chemical Engineering Science, 298, 120380. https://doi.org/10.1016/j.ces.2024.120380
- Straub, A., Sadlo, F., & Ertl, T. (2024). Feature-based deformation for flow visualization. Journal of Visualization. https://doi.org/10.1007/s12650-024-00963-5
- Tovey, S., Krippendorf, S., Spannowsky, M., Nikolaou, K., & Holm, C. (2024). Collective variables of neural networks: empirical time evolution and scaling laws. https://arxiv.org/abs/2410.07451
- Vahid Dastjerdi, S., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2024). Formation of Common Preferential Two‐Phase Displacement Pathways in Porous Media. Water Resources Research, 60(12), Article 12. https://doi.org/10.1029/2024wr037266
- Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow--Porous Medium System. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02123-7
- Wachsmann, S. B., Ruf, M., Prinz, C., Oehlsen, N., Zhou, X., Dyballa, M., Arweiler, C., Leistner, P., Steeb, H., Garrecht, H., Laschat, S., & Stegbauer, L. (2024). Chitin/Chitosan Biocomposite Foams with Chitins from Different Organisms for Sound Absorption. ACS Sustainable Chemistry & Engineering, 12(32), Article 32. https://doi.org/10.1021/acssuschemeng.4c00044
- Wang, J., Sonntag, A., Lee, D., Xotta, G., Salomoni, V. A., Steeb, H., Wagner, A., & Ehlers, W. (2024). Modelling and simulation of natural hydraulic fracturing applied to experiments on natural sandstone cores. Acta Geotechnica. https://doi.org/10.1007/s11440-024-02351-7
- Wang, W., Zhang, X., Bezgin, D., Buhendwa, A., Chu, X., & Weigand, B. (2024). JAX-based differentiable fluid dynamics on GPU and end-to-end optimization. https://arxiv.org/abs/2406.19494
- Yang, G., Xu, R., Tian, Y., Guo, S., Wu, J., & Chu, X. (2024). Data-driven methods for flow and transport in porous media: a review. https://arxiv.org/abs/2406.19939
2023
- Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160, 104371. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
- Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870. https://doi.org/10.1016/j.cma.2022.115870
- Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Computer Methods in Applied Mechanics and Engineering, 403, 115699. https://doi.org/10.1016/j.cma.2022.115699
- Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/22M1510406
- Bürkner, P.-C., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms. Journal of Computational Physics, 488, 112210. https://doi.org/10.1016/j.jcp.2023.112210
- Dastjerdi, S. V., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2023). Experimental evaluation of fluid connectivity in two-phase flow in porous media. Advances in Water Resources, 104378. https://doi.org/10.1016/j.advwatres.2023.104378
- Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of Generalized Interface Conditions for Stokes--Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems (pp. 275--283). Springer Nature Switzerland.
- Ehlers, W. (2023). A historical review on porous-media research. PAMM. https://doi.org/10.1002/pamm.202300271
- Flemisch, B., Nordbotten, J. M., Fernø, M., Juanes, R., Both, J. W., Class, H., Delshad, M., Doster, F., Ennis-King, J., Franc, J., Geiger, S., Gläser, D., Green, C., Gunning, J., Hajibeygi, H., Jackson, S. J., Jammoul, M., Karra, S., Li, J., … Zhang, Z. (2023). The FluidFlower Validation Benchmark Study for the Storage of CO\$\$\_2\$\$. Transport in Porous Media. https://doi.org/10.1007/s11242-023-01977-7
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM Journal on Scientific Computing, 45(1), Article 1. https://doi.org/10.1137/21m1415005
- Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions. Transport in Porous Media, 146(3), Article 3. https://doi.org/10.1007/s11242-022-01879-0
- Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Reservoir characterization by push-pull tests employing kinetic interface sensitive tracers - a pore-scale study for understanding large-scale processes. Advances in Water Resources, 174, 104424. https://doi.org/10.1016/j.advwatres.2023.104424
- Gravelle, S., Haber-Pohlmeier, S., Mattea, C., Stapf, S., Holm, C., & Schlaich, A. (2023). NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39(22), Article 22. https://doi.org/10.1021/acs.langmuir.3c00036
- Härter, J., Martínez, D. S., Poser, R., Weigand, B., & Lamanna, G. (2023). Coupling between a turbulent outer flow and an adjacent porous medium: High resolved Particle Image Velocimetry measurements. Physics of Fluids, 35(2), Article 2. https://doi.org/10.1063/5.0132193
- Karadimitriou, N., and Marios S. Valavanides, Mouravas, K., Steeb, H., & and. (2023). Flow-Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description, 64(5), Article 5. https://doi.org/10.30632/pjv64n5-2023a4
- Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable Water Isotopologue Fractionation During Soil-Water Evaporation: Analysis Using a Coupled Soil-Atmosphere Model. Water Resources Research, 59(2), Article 2. https://doi.org/10.1029/2022wr032385
- Kohlhaas, R., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator: concept for bias correction, assessment of surrogate reliability and its application to the carbon dioxide benchmark. Computational Geosciences, 27(3), Article 3. https://doi.org/10.1007/s10596-023-10199-1
- Kröker, I., Oladyshkin, S., & Rybak, I. (2023). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes--Darcy flow problems. Computational Geosciences. https://doi.org/10.1007/s10596-023-10236-z
- Lee, D., Weinhardt, F., Hommel, J., Piotrowski, J., Class, H., & Steeb, H. (2023). Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-37523-0
- Liu, Y., Wang, W., Yang, G., Nemati, H., & Chu, X. (2023). The interfacial modes and modal causality in a dispersed bubbly turbulent flow. Physics of Fluids, 35(8), Article 8. https://doi.org/10.1063/5.0159886
- Lohrmann, C., & Holm, C. (2023). Optimal motility strategies for self-propelled agents to explore porous media. Phys. Rev. E, 108(5), Article 5. https://doi.org/10.1103/PhysRevE.108.054401
- Lohrmann, C., & Holm, C. (2023). A novel model for biofilm initiation in porous media flow. Soft Matter, 19(36), Article 36. https://doi.org/10.1039/D3SM00575E
- Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences. https://doi.org/10.1007/s10596-023-10228-z
- Mouris, K., Acuna Espinoza, E., Schwindt, S., Mohammadi, F., Haun, S., Wieprecht, S., & Oladyshkin, S. (2023). Stability criteria for Bayesian calibration of reservoir sedimentation models. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-023-01712-7
- Oladyshkin, S., Praditia, T., Kroeker, I., Mohammadi, F., Nowak, W., & Otte, S. (2023). The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory. Neural Networks, 166, 85--104. https://doi.org/10.1016/j.neunet.2023.06.036
- Ruf, M., Lee, D., & Steeb, H. (2023). A multifunctional mechanical testing stage for micro x-ray computed tomography. Review of Scientific Instruments, 94, 085115. https://doi.org/10.1063/5.0153042
- Schmidt, P., Steeb, H., & Renner, J. (2023). Diagnosing Hydro-Mechanical Effects in Subsurface Fluid Flow Through Fractures. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-023-03304-z
- Schwindt, S., Medrano, S. C., Mouris, K., Beckers, F., Haun, S., Nowak, W., Wieprecht, S., & Oladyshkin, S. (2023). Bayesian calibration points to misconceptions in three-dimensional hydrodynamic reservoir modeling. Water Resources Research. https://doi.org/10.1029/2022wr033660
- Sonntag, A., Wagner, A., & Ehlers, W. (2023). Dynamic hydraulic fracturing in partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 414, 116121. https://doi.org/10.1016/j.cma.2023.116121
- Strohbeck, P., Eggenweiler, E., & Rybak, I. (2023). A Modification of the Beavers--Joseph Condition for Arbitrary Flows to the Fluid--porous Interface. Transport in Porous Media, 147(3), Article 3. https://doi.org/10.1007/s11242-023-01919-3
- Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and Efficient Preconditioners for Stokes--Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems (pp. 375--383). Springer Nature Switzerland.
- Taghizadeh, K., Ruf, M., Luding, S., & Steeb, H. (2023). X-ray 3D imaging–based microunderstanding of granular mixtures: Stiffness enhancement by adding small fractions of soft particles. Proceedings of the National Academy of Sciences, 120(26), Article 26. https://doi.org/10.1073/pnas.2219999120
- Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59(12), Article 12. https://doi.org/10.1029/2023WR035387
- Tobias Köppl, R. H. (2023). Dimension Reduced Modeling of Blood Flow in Large Arteries. Springer Cham. https://doi.org/10.1007/978-3-031-33087-2
- Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2023). Analysing the bone cement flow in the injection apparatus during vertebroplasty. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200295
- Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media. https://doi.org/10.1007/s11242-023-01944-2
- Völter, J.-S. L., Ricken, T., & Röhrle, O. (2023). About the applicability of the theory of porous media for the modelling of non-isothermal material injection into porous structures. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200070
- Wagner, A., Sonntag, A., Reuschen, S., Nowak, W., & Ehlers, W. (2023). Hydraulically induced fracturing in heterogeneous porous media using a TPM-phase-field model and geostatistics. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200118
- Wieboldt, R., Lindt, K., Pohlmeier, A., Mattea, C., Stapf, S., & Haber-Pohlmeier, S. (2023). Effects of Salt Precipitation in the Topmost Soil Layer Investigated by NMR. Applied Magnetic Resonance. https://doi.org/10.1007/s00723-023-01568-1
- Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
- Zhuang, L., Hassanizadeh, S. M., & Qin, C.-Z. (2023). Experimental determination of in-plane permeability of nonwoven thin fibrous materials. Textile Research Journal, 93(19–20), Article 19–20. https://doi.org/10.1177/00405175231181089
2022
- Ahmadi, N., Muniruzzaman, M., Sprocati, R., Heck, K., Mosthaf, K., & Rolle, M. (2022). Coupling soil/atmosphere interactions and geochemical processes: A multiphase and multicomponent reactive transport approach. Advances in Water Resources, 104303. https://doi.org/10.1016/j.advwatres.2022.104303
- Bringedal, C. (2022). Multiscale modeling and simulation of transport processes in porous media. Universität Stuttgart. https://doi.org/10.18419/OPUS-12829
- Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01772-w
- Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. Journal of Open Source Software, 7(74), Article 74. https://doi.org/10.21105/joss.03959
- Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. Journal of Computational Physics, 111031. https://doi.org/10.1016/j.jcp.2022.111031
- Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), Article 3.
- Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM: Mathematical Modelling and Numerical Analysis, 56, 727–742. https://doi.org/10.1051/m2an/2022025
- Ehlers, W., Sonntag, A., & Wagner, A. (2022). On Hydraulic Fracturing in Fully and Partially Saturated Brittle Porous Material. In F. Aldakheel, B. Hudobivnik, M. Soleimani, H. Wessels, C. Weißenfels, & M. Marino (Eds.), Current Trends and Open Problems in Computational Mechanics (pp. 111--119). Springer International Publishing. https://doi.org/10.1007/978-3-030-87312-7_12
- Frey, S. (2022). Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections. Computer Graphics Forum, 41(3), Article 3. https://doi.org/10.1111/cgf.14537
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2022). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443--450). Springer International Publishing. https://doi.org/10.1007/978-3-030-95025-5_47
- Gonzalez-Nicolas, A., Bilgic, D., Kröker, I., Mayar, A., Trevisan, L., Steeb, H., Wieprecht, S., & Nowak, W. (2022). Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01777-5
- Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2022). Reconstruction of NMR Relaxation Rates from Coarse-Grained Polymer Simulations. https://doi.org/10.26434/chemrxiv-2022-f90tv-v2
- Gravelle, S., Holm, C., & Schlaich, A. (2022). Transport of thin water films: from thermally activated random walks to hydrodynamics. The Journal of Chemical Physics. https://doi.org/10.1063/5.0099646
- Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure–Saturation Relations. Minerals, 12(10), Article 10. https://doi.org/10.3390/min12101186
- Kloker, L. H., & Bringedal, C. (2022). Solution approaches for evaporation-driven density instabilities in a slab of saturated porous media. Physics of Fluids, 34(9), Article 9. https://doi.org/10.1063/5.0110129
- Koch, T. (2022). Projection-based resolved interface 1D-3D mixed-dimension method for embedded tubular network systems. Computers & Mathematics with Applications, 109, 15--29. https://doi.org/10.1016/j.camwa.2022.01.021
- Kröker, I., & Oladyshkin, S. (2022). Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification. Reliability Engineering &$\mathsemicolon$ System Safety, 108376. https://doi.org/10.1016/j.ress.2022.108376
- Kurzeja, P., & Steeb, H. (2022). Acoustic waves in saturated porous media with gas bubbles. Philosophical Transactions of the Royal Society. https://doi.org/10.1098/rsta.2021.0370
- Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13(9), Article 9. https://doi.org/10.5194/se-13-1475-2022
- Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (2022). Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. Langmuir, 38(5), Article 5. https://doi.org/10.1021/acs.langmuir.1c02680
- Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01813-4
- Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01816-1
- Schmidt, F., Krüger, M., Keip, M.-A., & Hesch, C. (2022). Computational homogenization of higher-order continua. International Journal for Numerical Methods in Engineering, n/a(n/a), Article n/a. https://doi.org/10.1002/nme.6948
- Schmidt, P., Jaust, A., Steeb, H., & Schulte, M. (2022). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Computational Geosciences. https://doi.org/10.1007/s10596-021-10120-8
- Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01746-y
- Seus, D., Radu, F. A., & Rohde, C. (2022). Towards hybrid two-phase modelling using linear domain decomposition. Numerical Methods for Partial Differential Equations. https://doi.org/10.1002/num.22906
- Sharmin, S., Bastidas, M., Bringedal, C., & Pop, I. S. (2022). Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects. Applicable Analysis, 0(0), Article 0. https://doi.org/10.1080/00036811.2022.2052858
- Straub, A., Boblest, S., Karch, G. K., Sadlo, F., & Ertl, T. (2022). Droplet-Local Line Integration for Multiphase Flow. 2022 IEEE Visualization and Visual Analytics (VIS), 135–139. https://doi.org/10.1109/VIS54862.2022.00036
- Swamynathan, S., Jobst, S., Kienle, D., & Keip, M.-A. (2022). Phase-field modeling of fracture in strain-hardening elastomers: Variational formulation, multiaxial experiments and validation. Engineering Fracture Mechanics, 108303. https://doi.org/10.1016/j.engfracmech.2022.108303
- Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2022). A continuum mechanical porous media model for vertebroplasty: Numerical simulations and experimental validation. https://doi.org/10.48550/arXiv.2209.14654
- Valavanides, M. S., Karadimitriou, N., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. In SPWLA Annual Logging Symposium: Vol. Day 5 Wed, June 15, 2022. https://doi.org/10.30632/SPWLA-2022-0054
- van Westen, T., Hammer, M., Hafskjold, B., Aasen, A., Gross, J., & Wilhelmsen, Ø. (2022). Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. The Journal of Chemical Physics, 156(10), Article 10. https://doi.org/10.1063/5.0082690
- von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
- Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), Article 6. https://doi.org/10.1029/2021wr030426
- Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949, A16--. https://doi.org/DOI: 10.1017/jfm.2022.770
- Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity–Permeability Relationships. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01782-8
- Zech, A., & de Winter, M. (2022). A Probabilistic Formulation of the Diffusion Coefficient in Porous Media as Function of Porosity. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01737-5
2021
- Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993. https://doi.org/10.1016/j.jcp.2020.109993
- Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences. https://doi.org/10.1007/s10596-021-10057-y
- Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital rock physics: A geological driven workflow for the segmentation of anisotropic Ruhr sandstone. Front. Earth Sci., 9, 673753.
- Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147, 103759. https://doi.org/10.1016/j.advwatres.2020.103759
- Chu, X., Müller, J., & Weigand, B. (2021). Interface-Resolved Direct Numerical Simulation of Turbulent Flow over Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 343--354). Springer International Publishing.
- Chu, X., Wang, W., Müller, J., Von Schöning, H., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 373--386). Springer International Publishing.
- Class, H., Bürkle, P., Sauerborn, T., Trötschler, O., Strauch, B., & Zimmer, M. (2021). On the role of density-driven dissolution of CO2 in phreatic karst systems. Water Resources Research, n/a(n/a), Article n/a. https://doi.org/10.1029/2021WR030912
- Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Modeling and Simulation, 19(2), Article 2. https://doi.org/10.1137/20M1346638
- Eller, J., & Gross, J. (2021). Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory. Langmuir. https://doi.org/10.1021/acs.langmuir.0c03287
- Eller, J., Matzerath, T., van Westen, T., & Gross, J. (2021). Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. The Journal of Chemical Physics, 154(24), Article 24. https://doi.org/10.1063/5.0051201
- Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01655-6
- Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2021). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, n/a(n/a), Article n/a. https://doi.org/10.1111/cgf.14432
- Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 104044. https://doi.org/10.1016/j.advwatres.2021.104044
- Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2021). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 110715. https://doi.org/10.1016/j.jcp.2021.110715
- Haide, R., Fest-Santini, S., & Santini, M. (2021). Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review. Drying Technology, 1--14. https://doi.org/10.1080/07373937.2021.1876723
- Kessler, C., Eller, J., Gross, J., & Hansen, N. (2021). Adsorption of light gases in covalent organic frameworks: comparison of classical density functional theory and grand canonical Monte Carlo simulations. Microporous and Mesoporous Materials, 111263. https://doi.org/10.1016/j.micromeso.2021.111263
- Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01602-5
- Koch, T., Wu, H., & Schneider, M. (2021). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 110823. https://doi.org/10.1016/j.jcp.2021.110823
- Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter. https://doi.org/10.1039/D0SM01595D
- Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, n/a(n/a), Article n/a. https://doi.org/10.1111/sapm.12376
- Olivares, M. B., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/10.1016/j.amc.2020.125933
- Polukhov, E., & Keip, M.-A. (2021). On the Computational Homogenization of Deformation–Diffusion Processes. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000293
- Reuschen, S., Jobst, F., & Nowak, W. (2021). Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC. Water Resources Research. https://doi.org/10.1029/2021wr030051
- Reuschen, S., Nowak, W., & Guthke, A. (2021). The Four Ways to Consider Measurement Noise in Bayesian Model Selection—And Which One to Choose. Water Resources Research, 57(11), Article 11. https://doi.org/10.1029/2021WR030391
- Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., & Uekermann, B. (2021). FEniCS–preCICE: Coupling FEniCS to other simulation software. SoftwareX, 16, 100807. https://doi.org/10.1016/j.softx.2021.100807
- Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci., 25, 621--63. https://doi.org/10.1007/s10596-020-09994-x
- Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation. Computational Geosciences, 25(6), Article 6. https://doi.org/10.1007/s10596-021-10076-9
- Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials. https://doi.org/10.1038/s41563-021-01121-0
- Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor—Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11(2), Article 2. https://doi.org/10.3390/app11020682
- Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), Article 3. https://doi.org/10.3390/w13030383
- Sonntag, A., Wagner, A., & Ehlers, W. (2021). Modelling fluid-driven fractures for partially saturated porous materials. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000033
- Stierle, R., & Gross, J. (2021). Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. The Journal of Chemical Physics, 155(13), Article 13. https://doi.org/10.1063/5.0060088
- Trivedi, Z., Bleiler, C., Gehweiler, D., Gueorguiev-Rüegg, B., Ricken, T., Wagner, A., & Röhrle, O. (2021). Simulating vertebroplasty: A biomechanical challenge. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000313
- von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01560-y
- Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138, 1–23. https://doi.org/10.1007/s11242-021-01586-2
- Wang, W. (王文康), Yang, G. (杨光), Evrim, C., Terzis, A., Helmig, R., & Chu, X. (初旭). (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33(11), Article 11. https://doi.org/10.1063/5.0069311
- Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), Article 3. https://doi.org/10.1029/2020wr029361
- Weishaupt, K., & Helmig, R. (2021). A dynamic and fully implicit non-isothermal, two-phase, two-component pore-network model coupled to single-phase free flow for the pore-scale description of evaporation processes. Water Resources Research. https://doi.org/10.1029/2020wr028772
- Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Hendricks Franssen, H.-J. (2021). Bayesian Inversion of Multi-Gaussian Log-Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank-Nicolson Markov Chain Monte Carlo With Parallel Tempering. Water Resources Research, 57(9), Article 9. https://doi.org/10.1029/2021WR030313
- Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-83065-8
2020
- Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/draa064
- Bahlmann, L. M., Smits, K., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport across the Soil-Atmosphere-Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research. https://doi.org/10.1029/2020wr027600
- Boon, W. M., & Nordbotten, J. M. (2020). Stable mixed finite elements for linear elasticity with thin inclusions. Computational Geosciences. https://doi.org/10.1007/s10596-020-10013-2
- Boon, W. M. (2020). A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation. ESAIM: Mathematical Modelling and Numerical Analysis, 54(6), Article 6. https://doi.org/10.1051/m2an/2020035
- Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
- Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 537--545). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_50
- Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
- Budisa, A., Boon, W. M., & Hu, X. (2020). Mixed-Dimensional Auxiliary Space Preconditioners. SIAM Journal on Scientific Computing, 42(5), Article 5. https://doi.org/10.1137/19m1292618
- Burbulla, S., & Rohde, C. (2020). A Fully Conforming Finite Volume Approach to Two-Phase Flow in Fractured Porous Media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 547--555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3
- Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2020). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01506-w
- Chu, X., Wu, Y., Rist, U., & Weigand, B. (2020). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), Article 4. https://doi.org/10.1103/PhysRevFluids.5.044304
- Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
- de Winter, D. A. M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S. M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
- Eggenweiler, E., & Rybak, I. (2020). Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods,Theoretical Aspects, Examples (Vol. 323, pp. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
- Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers–Joseph interface condition for filtration problems. Journal of Fluid Mechanics, 892, A10. https://doi.org/DOI: 10.1017/jfm.2020.194
- Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
- Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12(11), Article 11. https://doi.org/10.3390/w12113008
- Frey, S. (2020). Temporally Dense Exploration of Moving and Deforming Shapes. Computer Graphics Forum, 40(1), Article 1. https://doi.org/10.1111/cgf.14092
- Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
- Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56), Article 56. https://doi.org/10.21105/joss.02291
- Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2011716117
- Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
- Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), Article 13. https://doi.org/10.3390/app10134538
- Höge, M., Guthke, A., & Nowak, W. (2020). Bayesian Model Weighting: The Many Faces of Model Averaging. Water, 12(2), Article 2. https://doi.org/10.3390/w12020309
- Jaust, A., Weishaupt, K., Mehl, M., & Flemisch, B. (2020). Partitioned Coupling Schemes for Free-Flow and Porous-Media Applications with Sharp Interfaces. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 605--613). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_57
- Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
- Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
- Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
- Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2020). Comparison of Pore-scale Capillary Pressure to Macroscale Capillary Pressure using Direct Numerical Simulations of Drainage under Dynamic and Quasi-static Conditions. Advances in Water Resources, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
- Lipp, M., & Helmig, R. (2020). A Locally-Refined Locally-Conservative Quadtree Finite-Volume Staggered-Grid Scheme. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Eds.), Droplet Interactions and Spray Processes (pp. 149--159). Springer International Publishing.
- Mitra, K., Köppl, T., Pop, I. S., van Duijn, C. J., & Helmig, R. (2020). Fronts in two-phase porous media flow problems: The effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 144(4), Article 4. https://doi.org/10.1111/sapm.12304
- Müller, J., Offenhäuser, P., Reitzle, M., & Weigand, B. (2020). A Method to Reduce Load Imbalances in Simulations of Solidification Processes with Free Surface 3D. In M. M. Resch, Y. Kovalenko, W. Bez, E. Focht, & H. Kobayashi (Eds.), Sustained Simulation Performance 2018 and 2019 (pp. 163--184). Springer International Publishing.
- Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), Article 8. https://doi.org/10.3390/e22080890
- Piotrowski, J., Huisman, J. A., Nachshon, U., Pohlmeier, A., & Vereecken, H. (2020). Gas Permeability of Salt Crusts Formed by Evaporation from Porous Media. Geosciences, 10(11), Article 11. https://doi.org/10.3390/geosciences10110423
- Polukhov, E., & Keip, M.-A. (2020). Computational homogenization of transient chemo-mechanical processes based on a variational minimization principle. Advanced Modeling and Simulation in Engineering Sciences, 7(1), Article 1. https://doi.org/10.1186/s40323-020-00161-6
- Poonoosamy, J., Haber-Pohlmeier, S., Deng, H., Deissmann, G., Klinkenberg, M., Gizatullin, B., Stapf, S., Brandt, F., Bosbach, D., & Pohlmeier, A. (2020). Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation. Minerals, 10(3), Article 3. https://doi.org/10.3390/min10030226
- Reuschen, S., Xu, T., & Nowak, W. (2020). Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC. Advances in Water Resources, 141, 103614. https://doi.org/10.1016/j.advwatres.2020.103614
- Rohde, C., & von Wolff, L. (2020). Homogenization of Nonlocal Navier--Stokes--Korteweg Equations for Compressible Liquid-Vapor Flow in Porous Media. SIAM Journal on Mathematical Analysis, 52(6), Article 6. https://doi.org/10.1137/19m1242434
- Rohde, C., & von Wolff, L. (2020). A Ternary Cahn-Hilliard Navier-Stokes Model for two Phase Flow with Precipitation and Dissolution. Mathematical Models and Methods in Applied Sciences. https://doi.org/10.1142/s0218202521500019
- Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), Article 11. https://doi.org/10.1063/5.0019541
- Scheer, D., Class, H., & Flemisch, B. (2020). Subsurface Environmental Modelling Between Science and Policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-51178-4
- Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
- Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. https://doi.org/10.17192/BFDM.2020.1.8085
- Schout, G., Hartog, N., Hassanizadeh, S. M., Helmig, R., & Griffioen, J. (2020). Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 230, 103619. https://doi.org/10.1016/j.jconhyd.2020.103619
- Schultze-Jena, A., Boon, M. A., de Winter, D. A. M., Bussmann, P. J. Th., Janssen, A. E. M., & van der Padt, A. (2020). Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Journal of Chromatography A, 1613, 460688. https://doi.org/10.1016/j.chroma.2019.460688
- Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
- Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), Article 2. https://doi.org/10.1029/2019wr026707
- Stierle, R., Sauer, E., Eller, J., Theiss, M., Rehner, P., Ackermann, P., & Gross, J. (2020). Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504, 112306. https://doi.org/10.1016/j.fluid.2019.112306
- van Duijn, C. J., Mikelić, A., & Wick, T. (2020). Mathematical theory and simulations of thermoporoelasticity. Computer Methods in Applied Mechanics and Engineering, 366, 113048. https://doi.org/10.1016/j.cma.2020.113048
- Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01477-y
- Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2020). Preconditioned Crank-Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi-Gaussian Log-Hydraulic Conductivity Fields. Water Resources Research, 56(8), Article 8. https://doi.org/10.1029/2020wr027110
- Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (2020). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), Article 1. https://doi.org/10.1063/1.5139308
2019
- Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1--7. https://doi.org/10.5194/adgeo-49-1-2019
- Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
- Ehlers, W., & Wagner, A. (2019). Modelling and simulation methods applied to coupled problems in porous-media mechanics. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-019-01520-5
- Eurich, L., Shahmoradi, S., Wagner, A., Borja, R., & Ehlers, W. (2019). Simulating plant-cell dehydration using a double-porosity formulation based on the Theory of Porous Media. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900243
- Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research. https://doi.org/10.1029/2018WR023554
- Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research. https://doi.org/10.1029/2018wr024252
- Kienle, D., Aldakheel, F., & Keip, M.-A. (2019). A finite-strain phase-field approach to ductile failure of frictional materials. International Journal of Solids and Structures. https://doi.org/10.1016/j.ijsolstr.2019.02.006
- Kienle, D., & Keip, M.-A. (2019). Modeling of hydraulically induced fractures in elastic-plastic solids. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900377
- Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2019). A Lagrange multiplier method for a discrete fracture model for flow in porous media. Computational Geosciences, 23(2), Article 2. https://doi.org/10.1007/s10596-018-9779-8
- Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150(17), Article 17. https://doi.org/10.1063/1.5085836
- Oladyshkin, S., & Nowak, W. (2019). The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design. Entropy, 21(11), Article 11. https://doi.org/10.3390/e21111081
- Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01319-6
- Teichtmeister, S., Mauthe, S., & Miehe, C. (2019). Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle. Computational Mechanics. https://doi.org/10.1007/s00466-019-01677-4
- Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), Article 4. https://doi.org/10.1063/1.5092169
- Trivedi, Z., Bleiler, C., Wagner, A., & Röhrle, O. (2019). A parametric permeability study for a simplified vertebra based on regular microstructures. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900383
- Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1. https://doi.org/10.1016/j.jcpx.2019.100011
- Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
- Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers--Joseph Interface Condition for Non-parallel Coupled Channel Flow over a Porous Structure at High Reynolds Numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
- Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444--454. https://doi.org/10.1016/j.cej.2019.03.191
- Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a Linear Array of Hydrophilic and Superhydrophobic Spheres on a Deep Water Pool. Colloids Interfaces, 3(1), Article 1. https://doi.org/10.3390/colloids3010029
- Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820--827. https://doi.org/10.1016/j.ces.2018.10.029
2018
- Chu, X., Weigand, B., & Vaikuntanathan, V. (2018). Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation. Physics of Fluids, 30(6), Article 6. https://doi.org/10.1063/1.5030651
- Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2018). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences. https://doi.org/10.1007/s10596-018-9797-6
- Frey, S. (2018). Spatio-Temporal Contours from Deep Volume Raycasting. Computer Graphics Forum, 37(3), Article 3. https://doi.org/10.1111/cgf.13438
- Gralka, P., Grottel, S., Staib, J., Schatz, K., Karch, G. K., Hirschler, M., Krone, M., Reina, G., Gumhold, S., & Ertl, T. (2018). 2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 38(3), Article 3. https://doi.org/10.1109/MCG.2017.3301120
- Hommel, J., Coltman, E., & Class, H. (2018). Porosity--Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 124(2), Article 2. https://doi.org/10.1007/s11242-018-1086-2
- Sauer, E., Terzis, A., Theiss, M., Weigand, B., & Gross, J. (2018). Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 34(42), Article 42. https://doi.org/10.1021/acs.langmuir.8b01985
- Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73, 82. https://doi.org/10.2516/ogst/2018064
- Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Computer Methods in Applied Mechanics and Engineering, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
- Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2018). Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures. Transport in Porous Media, 122(1), Article 1. https://doi.org/10.1007/s11242-017-0995-9
- Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2018). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 1–1. https://doi.org/10.1109/TVCG.2018.2864506
2017
- Frey, S., & Ertl, T. (2017). Flow-Based Temporal Selection for Interactive Volume Visualization. Computer Graphics Forum, 36(8), Article 8. https://doi.org/10.1111/cgf.13070