New SFB 1313 publication, published in Transport in Porous Media:
Authors
- Kilian Weishaupt (SFB 1313 research project A02)
- Alexandros Terzis
- Ioannis Zarikos
- Guang Yang
- Bernd Flemisch (SFB 1313 research Project D03)
- Matthijs de Winter (SFB 1313 research project A02)
- Rainer Helmig (SFB 1313 research projects A02 and C02)
Abstract
Modeling coupled systems of free flow adjacent to a porous medium by means of fully resolved Navier-Stokes equations is limited by the immense computational cost and is thus only feasible for relatively small domains. Coupled, hybrid-dimensional models can be much more efficient by simplifying the porous domain, e.g., in terms of a pore-network model. In this work, we present a coupled pore-network/free-flow model taking into account pore-scale slip at the local interfaces between free flow and the pores. We consider two dimensional and three-dimensional setups and show that our proposed slip condition can significantly increase the coupled model’s accuracy: compared to fully resolved equidimensional numerical reference solutions, the normalized errors for velocity are reduced by a factor of more than five, depending on the flow configuration. A pore-scale slip parameter ßpore required by the slip condition was determined numerically in acpreprocessing step. We found a linear scaling behavior of ßpore with the size of the interface pore body for three-dimensional and two-dimensional domains. The slip condition can thus be applied without incurring any run-time cost. In the last section of this work, we used the coupled model to recalculate a microfluidic experiment where we additionally exploited the flat structure of the micromodel which permits the use of a quasi-3D free-flow model. The extended coupled model is accurate and efficient.
Contact
Kilian Weishaupt
Dr.-Ing.Alumnus: Post-doctoral Researcher, Research Project A02